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1. Introduction

There has been intense recent activity regarding a certain class of N = 8 superconformal

theories in three dimensions, following the work of Bagger-Lambert (BL) [1 – 3] and also

Gustavsson [4], as these theories are potential candidates for the worldvolume description

of multiple M2-branes in M-theory. These constructions rely on the introduction of an

algebraic structure going under the name of a Lie 3-algebra, which is necessary for the

closure of the supersymmetry algebra. The metric versions of the above theories1 fall into

two classes, depending on whether the invariant bilinear form in 3-algebra space is positive

definite or indefinite: the Euclidean theories originally proposed by Bagger-Lambert and

their more recent Lorentzian counterparts [6 – 8].

The Lorentzian 3-algebra theories have been claimed to be capturing the low-energy

worldvolume dynamics of multiple parallel M2-branes but are plagued by apparent unitarity

problems due the presence of ghost-like degrees of freedom in the classical action. In order

to address this issue, a proposal has appeared which enlarges the theory by gauging a shift

symmetry for one of two ghosts, via the introduction of appropriate gauge fields. This

construction leads to a manifestly ghost-free spectrum [9, 10]. However, this results in the

other ghost field being frozen to a constant vev. Then, as already observed in [8] along

the lines of [11], the theory reduces precisely to maximally supersymmetric Yang-Mills in

three dimensions with a gauge coupling equal to the scalar vev.2 This and other properties

have been used to argue [10] that the ghost-free Lorentzian 3-algebra theory is indeed the

IR limit of SYM.

However,3 such a precise reduction should make one suspicious that the ghost-free

Lorentzian 3-algebra is the same theory as SYM rather than its infrared limit. In this

1See also [5] for the treatment of a non-metric proposal.
2A similar procedure has been carried out in the context of Janus field theory in ref. [12].
3This point was stressed in ref. [9].
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letter we would like to reinforce this interpretation by reversing the procedure of [8]. We

will show that starting from N = 8 SYM one can systematically - and uniquely - recover

the theory of [9, 10].

Let us summarise how we will achieve the transformation of SYM theory into the

ghost-free Lorentzian 3-algebra theory. First we will use a prescription for dualising non-

abelian gauge fields in the special case of three dimensions, due to de Wit, Nicolai and

Samtleben (dNS) [13 – 15]. In this prescription the gauge field Aµ gets replaced by two

non-dynamical gauge fields Aµ, Bµ with a B∧F (A) type kinetic term, plus an extra scalar

which ends up carrying the dynamical degree of freedom of the original YM gauge field.

Once this is done, we observe a potential SO(8) symmetry in the theory under which

the extra scalar mixes with the seven existing ones. We realise this SO(8) symmetry as

a formal symmetry (acting also on coupling constants) by replacing gYM with an SO(8)

vector of coupling constants gI
YM. Finally, the latter is promoted to a scalar field that

is an SO(8) vector, whose equations of motion render it constant. We justify all these

steps and note that they do not change the on-shell theory in any way. However, off-shell

they give a theory with enhanced symmetries: SO(8) R-symmetry instead of SO(7) and

superconformal symmetry instead of ordinary supersymmetry. We also comment on the

construction of SO(8)-covariant, gauge-invariant operators and find that, unsurprisingly,

these are only present off-shell and reduce to an SO(7)-covariant basis on any physical

solution.

Even though the above procedure closely follows the treatment of [10], albeit in the

opposite order, we believe that this angle will help to demystify the connection between

the two theories and clarify that the resultant Lagrangean is nothing but a re-writing of

maximally supersymmetric Yang-Mills theory. Interestingly, this re-writing allows one to

recover the conformal and SO(8) symmetries off shell, which are however spontaneously

broken by any physical vev of the theory. (The authors of [10] propose a prescription for

recovering the SO(8) R-symmetry by integrating over all values of the constrained ghost

field. In our interpretation this amounts to integrating SYM theory over all values of the

coupling constant. This seems unnatural at best and should also lead to violations of basic

QFT axioms, such as locality, and result into problems with cluster decomposition.) In that

sense, starting from the theory of D2-branes, one ends up with the theory of D2-branes.

The M2’s only emerge in the limit of taking the SYM coupling to infinity, as is of course

well-known.

Our discussion has no bearing on the original “un-gauged” Lorentzian BL proposal

of [6 – 8], which could still be a non-trivial example of an SO(8)-invariant theory. How-

ever, since this theory still needs to be demonstrated to be free of ghosts, we believe that

promising candidates for the worldvolume theory of multiple M2-branes in noncompact

space must lie elsewhere.

The rest of this note is organised as follows. In the next section we present our

main argument in full detail. We proceed with a discussion on the SO(8)-covariant gauge-

invariant operators in section 3. In section 4 we propose a potential generalisation of

the dNS duality to four dimensions and speculate that it might be useful in studying 4d

dualities. We close in section 5 with a discussion of our results.
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2. From SYM to Lorentzian 3-algebras

We start with the maximally supersymmetric interacting super Yang-Mills Lagrangean in

2+1 dimensions based on an arbitrary Lie algebra G:

L =Tr

(

−
1

4g2
YM

FµνFµν −
1

2
DµXiDµXi −

g2
YM

4
[Xi,Xj ][Xj ,Xi]

+
i

2
Ψ̄ 6DΨ +

i

2
gYMΨ̄Γi[X

i,Ψ]

)

,

(2.1)

Here Aµ is a gauge connection on G. The field strength and the covariant derivatives are

defined as:

Fµν = ∂µAν − ∂νAµ − [Aµ, Aν ] and Dµ = ∂µ − [Aµ, · ] . (2.2)

The Xis are seven matrix valued scalar fields transforming as vectors under the SO(7)

R-symmetry group. The Ψs are two-component spinors in (2+1)d and also 8-component

spinors of SO(7).

When G is U(N) this theory is the low energy worldvolume action for multiple parallel

D2-branes in flat space. For the other classical Lie algebras, it describes D-branes at

orientifolds. Our goal in this note is to show that for any gauge group, this Lagrangean

can be brought to the form of the Lorentzian Bagger-Lambert or 3-algebra field theory

proposed in [6 – 8], or more precisely to the “gauged” version of the above theory described

in [9, 10].

We proceed by introducing two new fields Bµ and φ that are adjoints of G. In terms

of these new fields the dNS duality transformation [13 – 15] is the replacement:

Tr

(

−
1

4g2
YM

FµνFµν

)

→ Tr

(

1

2
ǫµνλBµFνλ −

1

2
(Dµφ − gYMBµ)2

)

. (2.3)

We see that in addition to the gauge symmetry G, the new action has a noncompact abelian

gauge symmetry that we can call G̃, which has the same dimension as the original gauge

group G.4 This symmetry consists of the transformations:

δφ = gYMM , δBµ = DµM , (2.4)

where M(x) is an arbitrary matrix, valued in the adjoint of G. Clearly Bµ is the gauge

field for the shift symmetries G̃. Note that both in eq. (2.3) and eq. (2.4), the covariant

derivative Dµ is the one defined in eq. (2.2).

If one chooses the gauge DµBµ = 0 to fix the shift symmetry, the degree of freedom of

the original Yang-Mills gauge field Aµ can be considered to reside in the scalar φ. In this

sense one can think of φ as morally the dual of the original Aµ [13 – 15]. Alternatively we

can choose the gauge φ = 0, in which case the same degree of freedom resides in Bµ. The

4For the U(1) case the scalar φ is a periodic field. For non-simply connected gauge groups, i.e. for U(N),

the U(1) part will still have the aforementioned periodic shift symmetry. Our discussion here applies to the

SU(N) part of the theory after decoupling the U(1) supermultiplet, so compactness is not an issue.
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equivalence of the r.h.s. to the l.h.s. of eq. (2.3) can be conveniently seen by going to the

latter gauge. Once φ = 0 then Bµ is just an auxiliary field and one can integrate it out to

find the usual YM kinetic term for Fµν .5

We can now proceed to study the dNS-duality transformed N = 8 Yang-Mills theory.

Its Lagrangean is:

L =Tr

(

1

2
ǫµνλBµFνλ −

1

2
(Dµφ − gYMBµ)2 −

1

2
DµXiDµXi

−
g2
YM

4
[Xi,Xj ][Xj ,Xi] +

i

2
Ψ̄ 6DΨ +

i

2
gYMΨ̄Γi[X

i,Ψ]

)

.

(2.5)

The gauge-invariant kinetic terms for the eight scalar fields have a potential SO(8)

invariance, which can be exhibited as follows. First rename φ(x) → X8(x). Then the

scalar kinetic terms become −1
2
D̂µXID̂µXI , where:

D̂µXi = DµXi = ∂µXi − [Aµ,Xi], i = 1, 2, . . . , 7

D̂µX8 = DµX8 − gYMBµ = ∂µX8 − [Aµ,X8] − gYMBµ . (2.6)

Defining the constant 8-vector:

gI
YM = (0, . . . , 0, gYM) , I = 1, 2, . . . , 8 , (2.7)

the covariant derivatives can together be written:

D̂µXI = DµXI − gI
YMBµ . (2.8)

One can now uniquely write the SYM action in a form that is SO(8)-invariant under

transformations that rotate both the fields XI and the coupling-constant vector gI
YM:

L =Tr

(

1

2
ǫµνλBµFνλ −

1

2

(

DµXI − gI
YMBµ

)2
+

i

2
Ψ̄ 6DΨ +

i

2
gI
YMΨ̄ΓIJ [XJ ,Ψ]

−
1

12

(

gI
YM[XJ ,XK ] + gJ

YM[XK ,XI ] + gK
YM[XI ,XJ ]

)2
)

.

(2.9)

Here, in writing down the Yukawa-type interaction we have embedded the SO(7) Γ-matrices

into SO(8) using Γi = Γ̃8Γ̃i. On the r.h.s. the Γ-matrices are those of SO(8). One can

easily see that with this definition the l.h.s. matrices satisfy the Clifford algebra of SO(7).

The N = 8 supersymmetry transformations for the theory above can also be written

in a formally SO(8)-invariant form:

δXI = iǭ ΓIΨ , δΨ =
(

DµXI − gI
YMBµ

)

ΓµΓIǫ −
1

2
gI
YM[XJ ,XK ] ΓIJKǫ

δAµ =
i

2
gI
YMǭ ΓµΓIΨ , δBµ = iǭ ΓµΓI [X

I ,Ψ] . (2.10)

5If the scalar field φ were not introduced, the duality would go through but there would be no gauge

symmetry associated to the vector field Bµ, and it would simply end up as an auxiliary field in an uninter-

esting field theory. Here on the other hand, we instead get an interesting dual field theory containing all of

A, B, φ.
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The theory in eq. (2.9) is merely a re-writing of the dNS-transformed N = 8 SYM

action. It has the nice property that gI
YM can be an arbitrary 8-vector, not necessarily of

the form in eq. (2.7), with the theory depending only on its norm. To see this, simply pick

an arbitrary vector gI
YM with

√

gI
YMgI

YM = gYM and use the SO(8) invariance to rotate to

a basis where it takes the form eq. (2.7). It is in this basis that the field φ appearing in

the dNS duality transformation can be identified with X8.

At this stage the theory is only formally SO(8) invariant, as the transformations must

act on the coupling constants as well as the fields. So SO(8) is not a true field-theoretic

symmetry.6 By the same token, the theory is formally conformal invariant if, in addition

to scaling the fields, one scales the dimensional coupling constant vector gI
YM (this fact is

inherited from the original SYM in (2+1)d which already had this property). Again the

conformal invariance is not a true field-theoretic symmetry — this is particularly obvious,

as N = 8 SYM at finite coupling can hardly be conformal!

However at this stage we are in a position to simultaneously convert the formal SO(8)

and conformal symmetries to true field-theoretic symmetries by replacing the coupling

constant vector by a set of eight new scalar fields XI
+(x). The resulting theory will be

on-shell equivalent to the theory in eq. (2.9) if and only if the new scalar field XI
+(x) has

an equation of motion that renders it constant. Then we can simply write an arbitrary

classical solution as 〈XI
+〉 = gI

YM and the theory will reduce to that in eq. (2.9), which we

have already shown to be correct.

To enforce the constancy of XI
+ one introduces an auxiliary Lagrange multiplier. This

can be implemented by adding the following term to the action:

Lmult = C
µ
I ∂µXI

+ . (2.11)

As pointed out in footnote 5, it is typically not useful to introduce a vector field without

an associated gauge symmetry. To see what goes wrong for the case at hand, note that the

above term has a new symmetry [10]:

δC
µ
I = ǫµνλ∂ναλ I (2.12)

that needs to be gauge fixed. On doing this, one finds (for more details, see ref. [10]) a

standard gauge kinetic term:

LGF = (ǫµνλ∂νCλI)2 = (∂νCλI − ∂λCνI)2 = (Fνλ(CI))2 , (2.13)

where Fνλ(CI) denotes the field strength of CI
µ. Having obtained a kinetic term, the CI

µ’s

will introduce new negative norm states through their CI
0 component.

Therefore we impose a shift symmetry for CI
µ by introducing a new scalar field, which

we call XI
−
, and writing the relevant term in the action as:

Lmult = (Cµ I − ∂µXI
−
)∂µXI

+ . (2.14)

6An equivalent way to say this is that any particular choice of the coupling constant vector breaks SO(8)

down to the SO(7) orthogonal to it.
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This action now has an 8-dimensional abelian (shift) symmetry:

δXI
−

= λI , δCI
µ = ∂µλI , (2.15)

which will remove the negative-norms states associated to CI
µ.

The rest of the argument follows ref. [10]. One needs to gauge-fix the shift symmetry

and this is done by introducing the appropriate ghosts. The fermionic terms are easily

obtained in a similar fashion. We introduce a superpartner Ψ+ for XI
+ and a Lagrange

multiplier ηµ enforcing the condition Ψ+ = 0. Following the above chain of arguments, one

also needs to introduce a superpartner for XI
−
, called Ψ−. The structure of these terms in

Lfermion will be uniquely dictated by supersymmetry.7

We have thus ended up with the action:

L =Tr

(

1

2
ǫµνλBµFνλ −

1

2

(

DµXI − XI
+Bµ

)2

−
1

12

(

XI
+[XJ ,XK ] + XJ

+[XK ,XI ] + XK
+ [XI ,XJ ]

)2
)

+ (Cµ I − ∂µXI
−
)∂µXI

+ + Lgauge−fixing + Lghosts + Lfermions .

(2.16)

This is precisely the Bagger-Lambert action for an arbitrary Lorentzian 3-algebra (based

on a Lie algebra G). Because our manipulations required the field XI
+ to be constant on-

shell, we were led not to the original form discovered in refs. [6 – 8] (which indeed has not

yet been shown to be ghost-free) but directly to the modified one subsequently proposed

in refs. [9, 10] containing the gauge field CI
µ, for which freedom from ghosts is easily

demonstrated.

Gauging XI
−

to zero using the shift symmetry and eliminating CI
µ, we obtain the desired

constraint ∂µXI
+ = 0, whose general solution is XI

+ = gI
YM and the action reduces to that

in eq. (2.9).8 Hence we have arrived at the above action by a series of completely justified

transformations starting from N = 8 SYM.

It is striking that all the interactions and consequent properties of this action, which

were originally derived using 3-algebras with a Lorentzian metric, have been arrived at here

without any reference to 3-algebras whatsoever. As an example, the dimG abelian shift

symmetries that arise from the 3-algebra structure, as discussed in some detail in ref. [7],

are simply a basic property of the dNS transformation in our approach. Likewise the sextic

interaction that arises via 3-algebra structure constants in the original papers, appears in

our work when we promote gYM to an SO(8) vector of coupling constants and subsequently

replace that by an SO(8) vector of scalar fields.

3. Gauge-invariant operators and SO(8) symmetry

In ref. [10] it was noted that for this theory operators of the form Tr(XI1 · · ·XIn) are

not gauge invariant under the abelian noncompact symmetry associated with Bµ. To re-

7The corresponding supersymmetry transformations can be found in ref. [10].
8The classical solution breaks SO(8) to SO(7) and superconformal symmetry to ordinary supersymmetry.

This breaking is therefore spontaneous, which is an essential feature of this approach.

– 6 –
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dress this problem, the authors introduce a nonlocal adjoint scalar field which we call φ̃,

defined as:

φ̃(x) =
1

D2
DµBµ . (3.1)

They identify this with the magnetic dual to the non-abelian gauge field Aµ. They then

define fields:

Y I = XI − φ̃XI
+ (3.2)

that are invariant under the shift gauge transformations and lead to operators Tr(Y I1 · · ·Y In).

Under the noncompact gauge transformations eq. (2.4), φ̃ → φ̃ + M . Therefore, one can

choose a gauge in which φ̃ = 0 and the Y Is reduce to XIs, so one does seem to recover

SO(8) covariance in this fashion but at the cost of losing manifest gauge invariance.

The above discussion can be re-interpreted in terms of the dNS duality.9 Recall our

definition of the scalar field φ in eq. (2.3). Since this transforms under the shift symmetry

as φ → φ + gYMM , it follows that:

Z(x) ≡ φ(x) − gYMφ̃(x) =

(

φ − gYM

1

D2
DµBµ

)

(3.3)

is gauge invariant. It is this field, rather than φ̃, that unambiguously carries the single

physical adjoint degree of freedom of the original Yang-Mills gauge field after dNS duality.

Z is in general nonlocal, and becomes a local field only when we choose the gauge φ̃ = 0.

When we apply our covariantisation procedure (promoting gYM to an 8-vector and thence

to the field X8
+) we find that Z(x) combines with the remaining seven adjoint scalar fields

to form the 8-vector XI − φ̃XI
+, which is precisely the set Y I defined above.

We see, as in our previous discussions, that these operators are SO(8) covariant only

off-shell (when XI
+ is still a field) but as soon as XI

+ develops a vev, the SO(8) is broken

to SO(7).

4. Four-dimensional duality?

The dNS duality transformation is, as we have seen, particularly useful in (2+1)d where it

allowed us to relate N = 8 SYM to the Lorentzian 3-algebra theory. However a variant of

it can be written down in 3+1 dimensions, and we briefly describe it here in the hope that

it might enhance our understanding of four-dimensional dualities. The transformation in

4d maps a Yang-Mills theory with gauge field Aµ to a theory having three fields: a gauge

field Aµ, a 2-form gauge field Bµν and a second gauge field A′

µ, the latter two being in the

adjoint of the original gauge group G.

The map is as follows:

Tr

(

−
1

4g2
YM

FµνFµν

)

→ Tr

(

1

2
ǫµνλρBµνFλρ −

1

2

(

DµA′

ν − DνA′

µ − gYMBµν

)2

)

(4.1)

9We would like to acknowledge correspondence with the authors of ref. [10], based on which this section

has been revised.
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where:

DµA′

ν = ∂µA′

ν − [Aµ, A′

ν ] . (4.2)

In addition to the gauge symmetry G, this theory has an abelian “2-form” gauge symmetry

G̃ that acts as:

δA′

µ = gYMMµ, δBµν = DµMν − DνMµ . (4.3)

The duality is demonstrated by using the abelian shift symmetry to gauge A′

µ to 0 and

then integrating out Bµν . It would also be natural to extend this duality to make A′

µ into

a gauge field with an associated abelian symmetry. This can be done in an obvious way by

introducing a scalar field φ′ and replacing A′

µ → A′

µ −Dµφ′ everywhere in the above. The

question then is whether the formulation on the r.h.s. of eq. (4.1), or the generalisation of

it with this extra scalar field, can teach us something about supersymmetric field theories

in 4d.

From the above discussion we see that the dNS transformation can have a (3+1)d

analogue. However, the same does not appear to be true in any useful way for the rest

of our procedure, namely lifting of the coupling constant to a field and the consequent

enhancement of off-shell symmetries. It is a special feature of (2+1)d that the Yang-Mills

coupling gYM has the same canonical dimension as a scalar field, namely 1
2

in appropriate

units. In (3+1)d the former has canonical dimension 0 and the latter has dimension 1,

while in (1+1)d the reverse is true. Therefore, lifting the coupling constant to a field that

is rendered constant by its equation of motion seems to be natural only in (2+1)d. However

it may still be worth exploring whether the 4d duality transform exhibited here has some

useful application.

5. Discussion

The reduction of a proposed M2-brane field theory to Yang-Mills was proposed in ref. [11] in

the context of the Bagger-Lambert A4 theory. There, giving a vev to a scalar field reduces

the field theory to a maximally supersymmetric YM theory plus corrections suppressed by

inverse powers of gYM. The corrections are actually crucial, for at any finite value of gYM

they imply that the theory is not only SYM. At infinite coupling the theory is only SYM,

but in the IR limit, which is precisely what one wants.

With Lorentzian 3-algebras the result is different. Giving a vev to the scalar XI
+

reduces the theory (in its ghost-free form) to only SYM without corrections, as first noticed

in ref. [8]. In hindsight, this is a negative indication for the usefulness of the theory. In

this note we have shown that one can go directly from SYM to the Lorentzian 3-algebra

theory, clearly demonstrating that the two are equivalent theories.

Very recently, a new candidate theory for N M2-branes was announced [16]. This

theory, based on U(N)×U(N) Chern-Simons theory with bi-fundamental matter, appears

to have the property that, as with the Bagger-Lambert A4 theory, the Higgs mechanism

of ref. [11] gives a non-trivial reduction to SYM with corrections that are suppressed by

inverse powers of gYM. This is a positive feature. Indeed we suspect it could be used as a

proof that the theory is a correct description of multiple M2’s.
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As a final point, let us observe that the Lorentzian 3-algebra theory, while not (yet)

incorporating the flow to the infrared fixed point of SYM, may yet do so if an imaginative

treatment of it is found. Quite simply one needs to expand the theory about the vev

〈XI
+〉 = ∞. It is not ruled out that an astute field redefinition or other modification might

make this possible.
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